
Daxmod: A Toolbox for Text Classification
Ahmed Tchagnaou

University of Tours, France
ahmed.tchagnaou@etu.univ-tours.fr

Dominique H. Li
LIFAT Laboratory, University of Tours, France

dominique.li@univ-tours.fr

Abstract
Daxmod is a Python toolbox designed for, but not limited-
vto, the simplification of text classification tasks. Daxmod
includes modules for data loading, feature extraction, fea-
ture selection, model building, validation, and object persis-
tence. It has a consistent API that enables developers and
researchers to conduct experiments and perform various
tasks efficiently.Daxmod provides an extensible pipeline for
text classification and the ability to reuse trained objects and
conduct reproducible research work. The source code ofDax-
mod is available at https://github.com/Authentic10/daxmod.

CCS Concepts: • Computingmethodologies→Machine
learning.

Keywords: python, text classification, feature extraction, fea-
ture selection

ACM Reference Format:
Ahmed Tchagnaou and Dominique H. Li. 2022. Daxmod: A Tool-
box for Text Classification. In Proceedings of the 31st ACM Interna-
tional Conference on Information and Knowledge Management (CIKM
’22). ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
Text classification is one of the most common tasks in data
mining and machine learning. As textual data is generated
continuously, appropriate methods for gaining insights into
the data are required to aid research and business applica-
tions in understanding user needs and improving services.
Many techniques have emerged to handle text classifica-
tion problems since their inception. Among numerous ap-
proaches, the most effective ones are machine learning, par-
ticularly deep learning based [7, 12]. Because of the pro-
liferation of libraries and toolboxes, learning methods are
now easily accessible and widely applied in research and
application domains [1, 4, 8, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CIKM ’22, October 17–22, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Despite the availability of algorithms, in general, users
have to define their problem pipeline and write custom func-
tions to perform specific tasks. Furthermore, machine learn-
ing necessitates to extract features that will feed the models.
Therefore, many steps are required to build a text classifica-
tion model. The workflows and algorithms are determined
by the type of classification tasks, the size of the dataset, and
other factors. It is hard to find a tool that supports multiple
workflows and solutions. Therefore, managing the pipeline
becomes complex because not all modules follow the same
API structure. Furthermore, as user code base expand, the
maintenance of experiment code is a time-costing job.
In this paper, we present an efficient pipeline for text

classification-related workflows. Our work resulted in the
development of Daxmod (DAta, eXtraction, and MODel)1,
a Python-based toolbox, with consistent APIs for performing
text classification tasks (but not limited to). We note that
Daxmod also provides API interface to algorithm developers
in order to make focus on the algorithm itself but not to
concentrate the attention on creating test pipelines.
The rest of this paper is organized as follows. Section 2

briefly introduces related work. With examples, We detail
the structure of Daxmod in Section 3 and the workflow of
Daxmod in Section 4. Finally, we conclude in Section 5.

2 Related work
Daxmod was motivated by the need to automate tasks for
problems encountered while working on text classification.
In this section, we introduce the most common methods,
workflows, and existing tools in text classification.

Many solutions have achieved effective results using word
representation methods such as Bag of Words, TF-IDF, and
N-grams [2, 13]. In particular, there are several methods for
feature selection: dimensionality reduction, which creates
new features from existing ones, or feature selection, which
reduces the number of features by selecting the best ones
[5, 10]. Regarding the classifier algorithms, the most com-
mon ones are SVM and Naive Bayes [5, 7, 10, 13]. They are
frequently considered as baselines. It is mentioned that neu-
ral network-based algorithms outperform classical machine
learning algorithms in text classification [7].

Several libraries and toolboxes are available for text classi-
fication [4, 8, 14]. However, the complexity they assist with
requires a specific workflow or the dataset to be in a specific

1https://github.com/Authentic10/daxmod

https://github.com/Authentic10/daxmod
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/Authentic10/daxmod

CIKM ’22, October 17–22, 2022, Atlanta, GA, USA Tchagnaou and Li

format to be processed. General machine learning frame-
works such as scikit-learn [11] and Tensorflow [1] in-
clude modules for text-related tasks. These modules have
numerous features and can be tuned to solve specific text
classification tasks.

3 Daxmod
The purpose of Daxmod is to provide a simple and easy-to-
use toolbox for text classification. We built Daxmod with
different modules: (1) Access; (2) Extraction; (3) Selection; (4)
Classifiers; and (5) Persistence. Figure 1 shows the structure
of Daxmod.
Daxmod allows customizing the existing implementa-

tions and extending the features by adding custom functions
and other algorithms. It mainly uses the structure of the
scikit-learn API. We focus on providing the features re-
quired to conduct experiments and build models rapidly. The
toolbox is designed to perform the various tasks involved
in building text classification models and reusing them. The
module access is used to load data, the module extraction
to extract features from the data, the module selection for
feature selection, the module classifiers to build or use pre-
trained classifiers, and the module persistence to save and
load models.

Access

Load data in raw or
tabular form

Extraction

Extract features
from data

Selection

Reduce the features
after extraction

Classifiers

Train and evaluate
classification models

Persistence

Save and load models
trained

Daxmod

Models

Predefined Sklearn
models such as SVM,

Naive Bayes, etc.

Pretrained

Pre-trained models
such as BERT

Figure 1. Daxmod package structure.

3.1 Access
Loading data is the first step in creating models. Text data
can be presented in CSV-like or raw format; Daxmod pro-
vides methods for loading data in both cases. In the latter,
as shown in Figure 2, files are stored in a folder named by
their class. We assume that a user provides a folder that con-
tains two or more sub-folders. The sub-folders are a train set,
a test set, and eventually a validation set. Each sub-folder
contains folders corresponding to the classes in the dataset.
For instance, the folder names for binary sentiment analysis
will be positive and negative. This file organization allows us
to load different subsets of data with this module. The data
loading functions return a pandas dataframe[9] to permit
users to perform data analysis and cleaning.

Dataset

Train

Test

Class_1

Class_1

Class_2

file1.txt

file2.txt

file1.txt

file2.txt

file1.txt

file2.txt

file1.txt

file2.txt

Class_2

Figure 2. Binary classification folder structure

Load data in raw format
from daxmod.access import load_from_folder

train_data = load_from_folder(dataset_folder='imdb')

Load data in CSV format
from daxmod.access import load_from_file

data = load_from_file(filepath='imdb.csv')

Figure 3. Load data with the access module

Figure 3 shows how to load data with the module Access.
In this example, we loaded a dataset corresponding to the
folder structure in Figure 2 and a CSV file.

3.2 Extraction
It is necessary to transform the text into a form the algo-
rithms can process. This step is crucial in text classification
because it can impact the result of the task. In this module,
we provide different feature extraction methods.

The predefined extraction methods in this module include
Bag of Words, Bigrams, Trigrams, TF, and TF-IDF. We also
provide classes to support various scenarios, such as using
characters instead of words as tokens and creating custom
N-gram extractions.
Figures 4 and 5 show how to extract features from data

with Daxmod. We used the bag of words method to extract
features from data in Figure 4, and showed how to create a
custom N-grams extractor in Figure 5.

Daxmod: A Toolbox for Text Classification CIKM ’22, October 17–22, 2022, Atlanta, GA, USA

Import Extractors class from the extractor module
from daxmod.extraction import Extractors

Instantiate a bag of words extractor
extractor = Extractors(extractor='bow')

Fit the extractor and transform the data
extractor.fit(X, y)
X_transformed = extractor.transform(X)

Figure 4. Extract features with bag of words

Import Ngrams to define custom extractor
from daxmod.predefined.extractors import Ngrams

Create custom N-grams with unigrams and bigrams
extractor = Ngrams(ngram_range=(1,2))

Fit and transform the data with the created Ngrams
extractor.fit(X, y)
X_transformed = extractor.transform(X)

Figure 5. Extract features with custom N-grams

3.3 Selection
When we have a large corpus and use extraction meth-
ods such as N-grams, the extraction step returns a high-
dimensional feature set. Depending on the task and the avail-
able resources, we may not require all the features generated.
A solution is to reduce the number of features with the sev-
eral feature selection algorithms available[3]. This module
contains a class called SelectTopK, which select the best
features by analyzing the data.

Daxmod currently provides two methods for determining
the best features from data: analysis of variance and chi-
squared test. Both are available via the SelectTopK class.

Import the SelectTopK class from the module selection
from daxmod.selection import SelectTopK

Use ANOVA as selection method and 10K as the number of features to keep
topk = SelectTopK(score_func='anova', k=10000)

Fit and select the best features
topk.fit(X_transformed, y)
X_top = topk.transform(X_transformed)

Figure 6. Selection of features with ANOVA

Figure 6 shows the usage of the module Selection to
reduce the features from data. In this example, we used the
analysis of variance method to select the best 10,000 features
from the data.

3.4 Classifiers
The next step after feature extraction and selection in a text
classification task is to train and evaluate a classifier that
will work well on an unknown dataset. Users typically test

different features, algorithms, and hyperparameters to build
classifiers. It is important to follow general practices, such
as maintaining a test set for evaluating the model or per-
forming cross-validation. The module classifier contains two
sub-modules:Models for scikit-learn classifiers and Pre-
trained for pre-trained models defined with Tensorflow.

The moduleModels includes a class that allows using pre-
defined classifiers like SVM, Naive Bayes, and Multi-layer
Perceptron. Other algorithms from scikit-learn can be used
as well. To train a model with this module, the user can
specify the classifier name when initializing the class.
The module also includes a method for evaluating the

model on a dataset with different metrics using the trained
classifier. The supportedmetrics are accuracy, balanced_accuracy,
f1, precision, and recall.

The pretrained module has an implementation of a classi-
fier based on BERT. We used a light version of BERT for
users’ convenience. However, it is possible to modify some
parameters for other versions of BERT from the Tensor-
flow hub. For rapid experimentation, we defined a method
for auto-compiling the classifier with the appropriate metric,
loss, and optimizer.We can also compile themodel with other
metrics, losses, and optimizers from Tensorflow. The pre-
trained module also provides BERTLayer, which is practical
to define custom models with more layers and others.

Import the Models class from daxmod
from daxmod.classifiers.models import Models

Instantiate an SVM classifier
model = Models(classifier='svm')

Train the SVM classifier
model.fit(X_top, y)

Figure 7. Build an SVM classifier

Figures 7, 8, and 9 show how to train and evaluate a classi-
fier with the moduleModels. In Figure 7, we created an SVM
classifier by fitting it to the data. The Figure 8 shows how
to use a classifier imported from scikit-learn, and Figure 9
shows how to evaluate a trained model.

Import RandomForest from scikit-learn
from sklearn.ensemble import RandomForestClassifier

Pass an instance of the RandomForest as the parameter to Models
model = Models(classifier=RandomForestClassifier())

Figure 8. Use RandomForest from scikit-learn

3.5 Persistence
Joblib [6] provides model persistence methods. While con-
ducting experiments, users typically test various algorithms.

CIKM ’22, October 17–22, 2022, Atlanta, GA, USA Tchagnaou and Li

Load the test set
...............................
Transform the test set with the extractor and the selector
X_test_transformed = extractor.transform(X_test)
X_test_top = topk.transform(X_test_transformed)

Evaluate the model on the test set (accuracy)
model.evaluate(X_test_top, y_test, metric='accuracy')

Figure 9. Evaluate a classifier

Therefore, we can keep the built models to reuse them later.
The main advantages are that the models are not trained
again and that the results are reproducible. This module
includes methods for saving and loading objects, it makes
sharing, transporting, and reusing built models simple.
Many of the modules discussed above provide a way to

save objects without importing the persistence class. How-
ever, this module is required to load a previously saved object.

Save a model without the persistence module
model.save(name='svm', folder='models')

Import the method save_object from the persistence module
from daxmod.persistence import save_object

Save a model in the folder 'models' with 'svm' as name
save_object(obj=model, name='svm', folder='models')

Import the method load_object from the persistence module
from daxmod.persistence import load_object

Load a saved model
model = load_object(path='models/svm.model')

Figure 10. Save and load a model

Figure 10 shows how to use the module Persistence. In
this example, we saved and loaded a trained model.

4 Building with Daxmod
Daxmod provides two main workflows for text classifica-
tion: one based on building a model from scratch, Building
workflow, and the other one, based on pretrained models,
Pretrained workflow.
As shown in Figure 11, the building workflow performs

text classification in three steps: feature extraction, feature
selection, and model training and evaluation. The feature
selection step is optional. Therefore, after extracting features,
models can be built and evaluated directly. The pretrained
workflow employs pre-trained models via transfer learning.
We provide a model based on BERT that can be used imme-
diately after loading data.

Figure 12 shows how to use the pre-trained model BERT
in Daxmod. In this example, we built a classifier based on
BERT for a binary classification task.

Access

Extraction

Pretrained

Selection

Models

Feature Selection

Feature Extraction Models building
and evaluation

Models building
and evaluation

Data loading

Building workflow

Pretrained workflow

Workflow

Module

Optional step

Figure 11. Daxmod workflows.

Import Bert from pretrained module
from daxmod.classifiers.pretrained import Bert

Instantiate bert for a binary classifier
bert = Bert(n_classes=2)

Autocompile the model
bert.auto_compile()

Train the model
bert.fit(X, y)

Evaluate the model
bert.evaluate(X_test, y_test)

Figure 12. Build a classifier with BERT

Daxmod allows developers to extend the toolbox with
other feature extraction, selection, and classification algo-
rithms. For instance, to extend the available extractors with
a new one, we can create a new class with the necessary
methods in a file reserved for extractors. Then, we can add
it to the list of the extractors, and it will be available in the
Extractionmodule. This feature allows users to focus on the
methods rather than the steps used by Daxmod to perform
tasks.

5 Conclusion
Daxmod is a simple toolbox created for text classification
tasks with Python. It provides modules and methods to per-
form text classification with various workflows. Although
Daxmod is focused on text classification problems, however,
its ability to load data in tabular form makes it possible to
work on other types of datasets. Daxmod is still in its early
stages of development. The code-base will be improved in
the future, and new features such as word embeddings, other
feature selection and classification algorithms, pre-trained
models, and more will be added.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Daxmod: A Toolbox for Text Classification CIKM ’22, October 17–22, 2022, Atlanta, GA, USA

Michael Isard, et al. 2016. {TensorFlow}: A System for {Large-Scale}
Machine Learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16). 265–283.

[2] Ronen Feldman. 2013. Techniques and applications for sentiment
analysis. Commun. ACM 56, 4 (2013), 82–89.

[3] George Forman et al. 2003. An extensive empirical study of feature
selection metrics for text classification. J. Mach. Learn. Res. 3, Mar
(2003), 1289–1305.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian HWitten. 2009. The WEKA data mining software:
an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[5] M Ikonomakis, Sotiris Kotsiantis, and V Tampakas. 2005. Text classi-
fication using machine learning techniques. WSEAS transactions on
computers 4, 8 (2005), 966–974.

[6] Joblib Development Team. 2011. Joblib. https://joblib.readthedocs.io/
[7] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, San-

janaMendu, Laura Barnes, and Donald Brown. 2019. Text classification
algorithms: A survey. Information 10, 4 (2019), 150.

[8] Edward Loper and Steven Bird. 2002. Nltk: The natural language
toolkit. arXiv preprint cs/0205028 (2002).

[9] Wes McKinney et al. 2010. Data structures for statistical computing in
python. In Proceedings of the 9th Python in Science Conference, Vol. 445.

Austin, TX, 51–56.
[10] Marcin Michał Mirończuk and Jarosław Protasiewicz. 2018. A recent

overview of the state-of-the-art elements of text classification. Expert
Systems with Applications 106 (2018), 36–54.

[11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. the Journal of machine Learning research 12
(2011), 2825–2830.

[12] Duyu Tang, Bing Qin, and Ting Liu. 2015. Deep learning for sentiment
analysis: successful approaches and future challenges. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery 5, 6 (2015),
292–303.

[13] Sida I Wang and Christopher D Manning. 2012. Baselines and bigrams:
Simple, good sentiment and topic classification. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). 90–94.

[14] H Yu, C Ho, Y Juan, and C Lin. 2013. Libshorttext: A library for
short-text classification and analysis. Rapport interne, Department of
Computer Science, National Taiwan University (2013).

https://joblib.readthedocs.io/

	Abstract
	1 Introduction
	2 Related work
	3 Daxmod
	3.1 Access
	3.2 Extraction
	3.3 Selection
	3.4 Classifiers
	3.5 Persistence

	4 Building with Daxmod
	5 Conclusion
	References

